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ABSTRACT: Cell-based microarrays are being increasingly
used as a tool for combinatorial and high throughput screening
of cellular microenvironments. Analysis of microarrays requires
several steps, including microarray imaging, identification of
cell spots, quality control, and data exploration. While high
content image analysis, cell counting, and cell pattern
recognition methods are established, there is a need for new
postprocessing and quality control methods for cell-based
microarrays used to investigate combinatorial microenvironments. Previously, microarrayed cell spot identification and quality
control were performed manually, leading to excessive processing time and potentially resulting in human bias. This work
introduces an automated approach to identify cell-based microarray spots and spot quality control. The approach was used to
analyze the adhesion of murine cardiac side population cells on combinatorial arrays of extracellular matrix proteins. Microarrays
were imaged by automated fluorescence microscopy and cells were identified using open-source image analysis software
(CellProfiler). From these images, clusters of cells making up single cell spots were reliably identified by analyzing the distances
between cells using a density-based clustering algorithm (OPTICS). Naiv̈e Bayesian classifiers trained on manually scored
training sets identified good and poor quality spots using spot size, number of cells per spot, and cell location as quality control
criteria. Combined, the approach identified 78% of high quality spots and 87% of poor quality spots. Full factorial analysis of the
resulting microarray data revealed that collagen IV exhibited the highest positive effect on cell attachment. This data processing
approach allows for fast and unbiased analysis of cell-based microarray data.
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In vivo, cells receive and process tens of thousands of
microenvironmental signals. Recapitulating these physical,

chemical, and biological cues in vitro creates an enormous
experimental design space that is exceedingly difficult to study
in a parametric manner using traditional cell culture techniques.
Cell-based1−6 and biomaterials microarrays7−10 can help
address this problem. These technologies build on existing
high throughput synthesis and screening techniques to create
hundreds and thousands of combinatorial microenvironments
to study cellular behaviors. The widespread use of nucleic acid
microarrays has led to the standardization of analyzing
fluorescence-based microarray data.11 While significant advan-
ces have been made in image acquisition and analysis of cell-
based microarrays in terms of cell identification, high content
analysis, and cell pattern recognition,12−14 methods for
automated identification of clusters of cells, or cell spots, and

quality control of identified spots from high throughput data
are needed to advance cell-based microarrays technologies.
Inherent to miniaturizing and multiplexing biological experi-

ments is high variability in output data due to, among other
things, high numbers of experimental repetitions and low
numbers of biological events per repetition. Errors and
variability in outputs from high throughput and multiplexed
cell-based experiments can also originate in the generation of
the combinatorial protein libraries, microarray fabrication, cell
seeding, immunocytochemical analysis, and image acquisition.15

Obtaining high quality data from microarrays requires several
steps including, imaging, spot identification, spot quality
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control, and data analysis. Each of these steps are well
established in DNA based microarrays,11,16−18 but due to
differences in experimental outcomes and microarray con-
struction they cannot be directly applied to cell-based
microarrays. For example, outputs of DNA microarray
experiments are spots with homogeneous fluorescence, while
immunocytochemical analysis and fluorescent staining of cell-
based microarrays results in heterogeneous fluorescence within
a cell spot.1,6

Sophisticated commercial and open source software
programs are available that readily identify cell nuclei,
cytoskeletons, and immunohistochemical staining from fluo-
rescence microscopy images12,14 and techniques for confining
cells within three-dimensional micropatterned arrays19 and two-
dimensional geometries of cell adhesion proteins and
biomaterials have been developed.13 However, these techniques
still require postprocessing of image analysis data and quality
control methods to successfully perform robust high
throughput screening. For example, nonspecific cell attachment
to microarray backgrounds can distort spot size and interfere
with spot detection, and uneven cell seeding can occur with cell
types prone to forming aggregates. To address these and other
potential sources of errors, cell-based microarrays are often
evaluated manually:1,2,6,20 images of each spot are inspected,
cells are counted, and spots that are clearly damaged, missing,
abnormally sized, or otherwise visibly abnormal are excluded
from further analyses. This method of quality control and spot
identification limits the high throughput nature of the
experiments and is prone to human error and bias.
Here, we implement an approach to microarray analysis that

accounts for potential sources of variability and errors in cell-
based microarrays (Figure 1). The approach is adapted from
existing DNA microarray and cell-based imaging analyses and
combines spot identification with quality control to extract high
quality data from cell-based microarrays. Fluorescence images
of stained microarrays were first acquired by automated

microscopy, and all cells in a single image were identified by
image analysis software (CellProfiler; Broad Institute). For spot
identification, we employed a density-based clustering algo-
rithm (OPTICS)21 to analyze the distances between all cells
within a single image. This algorithm was previously used for
clustering protein sequences,22 and was here used to identify
cells confined to microarray spots from background fluo-
rescence, nonspecifically adhered cells, and debris and imaging
artifacts erroneously identified as cells during image analysis.
Two methods of quality control were tested and compared
including a 3-step scoring algorithm and naiv̈e Bayesian
classifiers. Both methods applied quality control parameters
of cell cluster size, number of cells per spot, and cell location.
The methods were compared in terms of their sensitivity
(identification of true positives), specificity (identification of
true negatives), and correlation to a manually scored data set.
We used the best of these strategies (OPTICS followed by
naiv̈e Bayesian classifiers) to evaluate the main and interaction
effects of murine cardiac side population (CSP) cell density on
a combinatorial extracellular matrix (ECM) microarray. CSP
cells have the potential for cardiomyogenic differentiation23 and
study of these cells in combinatorial microenvironments will
help in developing new cardiac therapies.
To evaluate our data processing strategies we used an

established cell-ECM microarray fabrication method that has
previously been used to study mouse embryonic stem cell
differentiation1 and hepatic stellate cell activation.2 In this
method, ECM protein microarrays are prepared on a standard
glass slide modified with a polyacrylamide gel. ECM proteins
were adsorbed on the ployacrylamid gel pad, which was
hydrophobic when dried. In an aqueous environment, the
hydrated polyacrylamide gel pad was resistant to the adsorption
of serum proteins and cells preferentially adhered to the
microarrayed ECM proteins.1 Herein, cell-ECM microarrays
comprised of four randomized subarrays that each included all
single, binary, and tertiary combinations of fibronectin, laminin,

Figure 1. Fabrication, image acquisition, and data processing of cell-based microarrays. (i) Cartoon representations of the fabrication and imaging of
combinatorial extracellular matrix (ECM) microarrays with seeded cells. Microarrays are created by robotic contact printing and cell spots are
imaged by automated microscopy after immunocytochemical staining. Fluorescence images and data are processed by different analysis approaches
(ii and iii). The data processing approaches are general and can be applied to the evaluation of fluorescent markers and visible stains. The first step in
each approach uses CellProfiler to identify all individual cells; the subsequent methods identify which cells belong to cell spots and which cell spots
are of good quality.
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and collagens I, III, and IV were used. The microarrays also
included intra-array negative controls of bovine serum albumin
(of equal concentration to the ECM proteins) as well as
negative controls with no added proteins.
Analysis of cell-based microarrays differs from nucleic acid

based microarrays as the latter results in microarrayed spots
with homogenously distributed fluorescence. In cell-based
assays immunocytochemical analysis can provide useful
information, but such analysis results in microarrayed spots
with heterogeneous fluorescence. For example, nuclear staining
results in discrete fluorescence for each attached cell. This
information is useful in high content analysis but can present a
challenge to reliable high throughput identification of cell spots.
Previously established spot identification techniques are based
on the homogeneous distribution of fluorescence seen in
nucleic acid microarrays18 and therefore not applicable to the
heterogeneities in cell-based microarrays. Existing image
analysis software is capable of identifying individual cell bodies,
cell nuclei, and specific fluorescent antibodies staining, but such
analysis does not identify clustered cells confined to a
microarray spot from other artifacts within an image.
A fluorescence microscope with automated staging was used

to acquire two color images (DAPI stained nuclei and
fluorescently labeled phalloidin stained actin filaments) of
each individual microarrayed spot after 12 h of culture. While
laser scanning, similar to that used in nucleic acid microarrays is
feasible,1,7,24 the low resolution of laser scanners limits this
method to surrogate measurements of cell counts. A more
direct measure of cell counts is possible by fluorescence
microscopy and automatic cell detection software.25,26 Nuclei
and associated cell bodies on each image were identified using
an image analysis protocol in CellProfiler software. Parameters

used in the protocol and example images are shown in
Supporting Information Figure 1 (SFigure 1). Spots within a
microarray (Figure 2A) are variable and can result in high
quality spots with minimal nonspecific adhesion (Figure 2B and
C), spots with high nonspecific adhesion (Figure 2D), and
damaged spots (Figure 2E). These images demonstrate the
need to employ spot identification and subsequent quality
control to attain high quality cell-based microarray data. This
need is exemplified in Figure 2E, where the debris (circled in
white) is classified as a number of connected cells by
CellProfiler (SFigure 1).
After initial processing of the single-spot images by

CellProfiler, the identified nuclei were analyzed and clustered
using the OPTICS density based clustering algorithm.21 Cells
were designated as belonging to a cluster if at least 4 cells were
found within a specified distance or they were within the same
distance of a cell already belonging to a cluster. Cells were
reliably identified as belonging to one cluster and outlying cells
were classified as noise (Figure 2F). To control for accurate cell
counts per identified cluster, cells on spots were counted
manually. Clustered cell counts shows good correlation (r =
0.88, p < 0.001) with the manually counted numbers (Figure
2G); however, there are many cell counts in the lower left
quadrant of the correlation as well as in the upper right
quadrant that correlate very poorly. We attribute the high
number of false positives in the lower left quadrant that show
positive cell counts when zero cells are present to a
misidentification during image analysis of small indentations
in the hydrogel substrate made by the contact printer as
adhered cells. While the clustering algorithm does well in
identifying many of the cell spots an additional level of quality

Figure 2. Combinatorial ECM-cardiac side population (CSP) cell microarrays. (A) A mosaic of fluorescent images of a combinatorial ECM
microarray seeded with 10,000 CSP cells per cm2. Images were acquired at 10× magnification after 12 h of culture and show phalloidin (red) and
nuclear (blue) staining. The mosaic image shows one of four subarrays per glass slide. Each subarray contains five replicates of 30 combinations of
Fn, Lm, CI, CIII, and CIV (300 μg/mL total protein concentration) and five replicates of negative controls with no protein and five replicates
containing 300 μg/mL of BSA. Sets of five replicates in each subarray are randomly ordered. (B−E) Selected images of microarrayed spots that are of
high quality (B,C), low quality (D), and damaged or contain debris (E; debris is circle in white). The brightness of image (E) has been increased so
that the identified debris is clearly visible. Scale bar is 100 μm. (F) Fluorescent image of a single microarrayed spot with adhered CSP cells (left) with
outliers from the microarrayed spot circled in white. Cells within a cluster are identified with a red spot, while cells outside of the cluster are
identified with a black spot (right). Phalloidin stain is shown in red, while the nuclei are shown in blue. (G) Correlation of CSP cells per
microarrayed spot as determined by counting each cell through visual inspection and by identification with the OPTICS clustering algorithm.
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control was required to account for damaged, missing, poorly
imaged, or otherwise poor quality spots.
Two different approaches were used for quality control of the

identified cell clusters: automatic scoring based on a predefined
set of rules and naiv̈e Bayesian classifiers. Both methods used
cell cluster size, number of cells per spot, and cell location as
parameters to evaluate each spot. These criteria were selected
based on the most common errors and inconsistencies that we
observed during microarray fabrication and analysis. For
example, abnormally high cell counts resulted from imaging
artifacts and debris (SFigure 1B) that were identified as cells,
blank spots were identified as small cell clusters due to a small
indentation on the substrate made by microarray pins, and
moderately high levels of nonspecific cell attachment resulted in
the classification of two cell clusters. In the case of the
automatic scoring method, spots were considered of good
quality if the cluster size, the number of cells per spot, and the
cell location were within two standard deviations of the mean.
Cells and spots outside of two standard deviations were
considered poor quality. Two manually scored arrays were used
as training sets for the naiv̈e Bayesian classifiers to identify the
best values for the three quality control criteria.
The successes of the quality control methods were judged by

evaluating the sensitivity (true positives) and specificity (true
negatives) of the methods, and by correlation of processed data
to a manually scored data set. Sensitivity was defined as the
percent of cell spots identified as good quality by a method
(clustering, automatic scoring, or naiv̈e Bayesian) and also by
manual evaluation. Specificity was defined as the percentage of
cell spots identified as poor quality by a method and also by
manual evaluation. The manually scored data set was

considered a gold standard for comparison and was evaluated
with the following four criteria: i) cells were present on an
image, ii) cells formed a distinguishable cluster within the
image, iii) there were no more than 5 cells outside of the
cluster, and iv) there were no artifacts in the image.
Without quality control, the clustering algorithm results in

data sets with 100% sensitivity and 0% specificity (Figure 3A,
left). One hundred percent sensitivity and 0% specificity
indicates that no quality control is applied and that all cell
clusters are indiscriminately included (both true positives and
false positives are classified as good quality). Application of the
automatic scoring algorithm resulted in a high level of quality
control with 94% specificity but only 44% sensitivity (Figure
3A, middle). In this case, a large number of poor quality spots
were identified correctly but at the expense of incorrectly
classifying many good quality spots. Application of the naiv̈e
Bayesian classifiers onto the same data sets improved sensitivity
to 78% while maintaining high specificity of 87%, thus correctly
classifying high percentages of poor and good quality spots,
respectively.
The quality control methods were also evaluated by

comparing the mean cell counts per ECM combination. The
mean cells per spot for a given ECM combination for the
cluster analysis, automatically scored, and naiv̈e Bayesian scored
data were correlated with manually scored data to check for
possible biasing by the quality control methods (Figure 3B).
Clustered data showed strong correlation with manually scored
data (r = 0.89) indicating good overall printing and seeding
quality. Automatic scoring showed a weaker correlation (r =
0.74) indicating over correction of the data set, while naiv̈e
Bayesian classifiers showed the highest correlation (r = 0.95)

Figure 3. Comparison of quality control methods for cell attachment on combinatorial cell-ECM microarrays. (A) Graphical representations of the
sensitivity and specificity of data from cluster analysis, automated scoring, and naiv̈e Bayesian analysis. In a perfect data set all high or low quality
spots scored manually would also be considered high or low quality, respectively, by the quality control strategies (100% sensitive and 100%
specific). (A, left) The clustered data set was 100% sensitive (lower left quadrant) and 0% specific (upper right quadrant). (A, middle, right) The
automated scoring quality control resulted in 44% sensitivity and 94% specificity, while the naiv̈e Bayesian analysis quality control resulted in 78%
sensitivity and 87% specificity. (B) Correlations of the average number of cells per ECM combination resultant from the cluster analysis (left), the
automated scoring (middle), and naiv̈e Bayesian analysis (right). The dashed line is x = y, and the solid line is a linear fit to the correlated data.
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indicating successful removal of outliers and low quality spots.
While automatic scoring performed well in identifying low
quality spots (i.e., has high specificity), it overcorrected the data
by excluding many good data points. Using naiv̈e Bayesian
classifiers trained on a manually scored subset to identify low
quality spots resulted in both high sensitivity and specificity,
thus successfully removing low quality spots without bias. Spot
identification and quality control analysis leads to the exclusion
of microarrayed spots from final analysis. Our analysis resulted
in an exclusion rate of 65% after naiv̈e Bayesian classification,
which compares favorably with previous cell-based microarrays
that ranged up to 50% exclusion.1

The power of cell-based microarrays is the ability to
simultaneously evaluate combinatorial microenvironments
from which the main and interaction effects of the independent
variables can be extracted. Here, a full factorial analysis was
used to determine the effects of ECM proteins on CSP cell
attachment from the naiv̈e Bayesian classifiers scored data sets
(Figure 4). The main effects of all ECM components identified

from the Bayesian analysis are positive and significant (p <
0.05). This is also the case in the calculated effects of the
manually scored subset (Figure 4). Microarrays were seeded
with 10,000 cells per cm2, resulting in a theoretical initial
density of 7 cells per spot (average spot diameter of 300 μm).
The average number of cells per spot across the microarray was
18 ± 10 cells, and each ECM exhibited a positive main effect

(CIV, 4.3 ± 0.4; Fn, 3.7 ± 0.4; Lm, 3.4 ± 0.4; CI, 2.5 ± 0.4;
CIII, 1.8 ± 0.4; values are stated for the Bayesian classifiers
scored data set).
Interaction effects between ECM components were at least 2

orders of magnitude smaller than the observed main effects,
indicating that synergistic effects between ECM compounds
were minimal. However, combinations of different ECM
components were neither favored nor avoided in cell adhesion.
Since cell density can alter individual cell biology, having similar
attachment among all components can be beneficial in
evaluating other cellular behaviors. It is expected that significant
and large interaction effects will be observed in the analysis of
more complex cell behaviors similar to what has previously
been described.1,2

Cell-based microarray experiments differ from macroscale
experiments in several ways. Spots can be misprinted leading to
a lack of ECM deposition, spots can be missed during cell
seeding, and artifacts introduced during staining can render
spots unusable. In previous experiments on cell-based micro-
arrays such spots were excluded manually.1,6,20 Manual
evaluation is a time-consuming task especially when micro-
arrays become large and consist of several thousand spots. Spot
identification and single-spot quality control is well established
in nucleic acid based assays.16,27,28 These techniques rely on
homogenously distributed fluorescence values and therefore are
difficult to directly translate to cell-based data as obtained from
cell-based microarrays. The use of naiv̈e Bayesian classifiers on
nucleic acid microarrays has been described,29 and as the
parameters used to construct naiv̈e Bayesian classifiers could be
defined, this strategy was successfully adapted to cell-based
microarrays here. The methods described here are intended to
augment image analysis software as the methods rely on the
image analysis capabilities of CellProfiler (or similar software)
to identify cells in acquired images. The combined application
of image analysis and the methods described here will help
advance new combinatorial and high throughput investigations
of cellular microenvironment by automating postprocessing (in
this case spot identification) and quality control.
Cell-based microarrays are a promising tool for the

exploration of the vast experimental space created by the
physical, chemical, and biological parameters of the cellular
microenvironment. Investigating this space will help advance
cell therapies and tissue engineering technologies, and the
automated spot detection and quality control tools developed
here will help do so in a high throughput manner.

■ EXPERIMENTAL PROCEDURES
Fabrication of Combinatorial Extracellular Matrix

(ECM) Microarrays. Microarrays of single, binary, and tertiary
combinations of fibronectin, laminin, collagen I, collagen III,
and collagen IV were fabricated using a robotic contact
microarrayer (SpotBot3, ArrayIt Corp.). The microarrays were
produced on standard-size glass microscope slides (25 × 75
mm) modified with a polyacrylamide gel pad.1,2 Glass
microscope slides were cleaned with 10%(wt/v) NaOH and
modified with 3-(trimethoxysilyl) propyl methacrylate. After
curing at 80 °C for 10−12 h, the silanized glass were washed
(3-times in 100% ethanol) and a 100 μL gel pad of 9.5%(wt/v)
acrylamide, 0.5%(wt/v) bis-acrylamide and 20 μg mL−1

photoinitiator 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-
propyl)ketone Irgacure 2959 was photopolymerized to each
slide. The robotic spotter, equipped with a 946MP9 pin (0.24
nL per spot, 300 μm spot diameter) was used to create

Figure 4. Main and interaction effects of extracellular matrix (ECM)
proteins on adhesion of murine cardiac side population (CSP) cells for
the naıv̈e Bayesian analysis quality control method (black) and for the
manually scored standard (gray). Effects are ordered from top to
bottom in descending order (* p < 0.05).
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microarrays of ECM spots with a pitch of 900 μm and a total of
640 spots per modified glass slide. Each ECM was printed at
100 μg mL−1 concentration and a 300 mg μL−1 total protein
concentration was maintained with bovine serum albumin as
needed. ECM protein solutions were prepared in 100 mM
acetate, 5 mM EDTA, 20%(v/v) glycerol, and 0.25% Trinton-
X100 adjusted to pH 5. Printing was done in a controlled
environment with a constant humidity of 40% and a substrate
temperature of 15 °C. Printed microarrays were incubated at 4
°C for 16 h prior to use.
Cardiac Side Population (CSP) Cell Isolation and

Culture. CSP cells were isolated from adult mouse hearts as
described before.30 Briefly, hearts were digested and mono-
nuclear cells were stained with Hoechst 33423 and for the
surface markers Sca1 and CD31. Sca1+ CD31- Hoechst low
cells were selected using FACS. The cells were cultured in
alpha-MEM containing 20% FBS (CSP media) and used
between passages 4−6.
After incubation at 4 °C for 16 h printed microarrays were

washed with sterile phosphate buffered saline and the gel pads
were allowed to swell for 30 min. CSP cells were seeded at a
density of 10,000 cells cm−2 in 5 mL of CSP media. After 12 h
cells were fixed with 4% paraformaldehyde for 20 min and
permeabilized with a solution of 0.5% Triton-X100 and 1%
BSA. Microarrays were washed with 5 mL PBS 3-times between
each step. F-actin was visualized by staining with phalloidin
(Alexa Fluor 594 phalloidin, dilution 1:40, 30 min at room
temperature) and nuclei were visualized with mounting media
containing DAPI (Vectashield).
Fluorescence Microscopy and Image Acquisition.

Series of grayscale images of immunostained samples were
acquired using the automated stage of a Zeiss Axio Observer
fluorescent microscope and were analyzed using the cell image
analysis software CellProfiler (Broad Institute). A CellProfiler
analysis pipeline was created to identify cell nuclei and cell
bodies (SFigure 1).
Cell-Based Microarray Spot Detection. Cell clusters

were identified from CellProfiler outputs by the density based
algorithm OPTICS.21 Two hundred pixels (120 μm) were set
as the maximum radius and 5 cells were defined as the
minimum cluster size. In case of multiple identified clusters, the
cluster with the highest cell number was chosen to proceed.
Clustered cell numbers, dimensions, and cell positions within
the cluster were exported for further quality scoring.
Manual Scoring and Quality Control. Images were

manually scored based on the following rules: (1) cells were
present; (2) cells formed a cluster and the cluster was clearly
detected by the clustering algorithm; (3) no more than 5 cells
were outside the cluster; and (4) no artifacts were present in
the image.
Quality Control: Automated Scoring and Naiv̈e

Bayesian Analysis. Two different strategies were used to
detect erroneous spots: automatic scoring using a predefined
set of rules and naiv̈e Bayesian classifiers. For automatic scoring,
cluster dimensions were evaluated first. Subsequently, spots
were scored based on their cell number, and variation in cell
location. For naiv̈e Bayesian classifiers manually scored arrays
were used as training data. The same criteria as were used for
automatic scoring were used to determine Bayesian distribu-
tions. The distribution model was then used to predict the class
of spots. The program scripts used for clustering and scoring
are available in the Supporting Information. The two manually
scored arrays were used separately to create training sets.

Sensitivity and specificity of the prediction were determined by
using the model from array 1 to predict array 2 and vice versa.
The software used for clustering and scoring is available online
at https://gitorious.org/optics-cellprofiler

Data Processing and Statistical Analysis. Spot identi-
fication by cluster analysis and automated quality control
scoring were performed using python, and statistical analysis
and naiv̈e Bayesian classification was performed using R 2.10.1
with added software package e1071. Sensitivity and specificity
were defined as (true positives/(true positives+false negatives))
and (true negatives/(true negatives + false positives)),
respectively. Correlations were performed using Pearson’s
test. Full factorial analysis for effect sizes was performed by
using multifactorial analysis of variance (ANOVA).
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